LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

An Unsupervised Domain Adaptation Method Towards Multi-Level Features and Decision Boundaries for Cross-Scene Hyperspectral Image Classification

Photo from wikipedia

Despite success in the same-scene hyperspectral image classification (HSIC), for the cross-scene classification, samples between source and target scenes are not drawn from the independent and identical distribution, resulting in… Click to show full abstract

Despite success in the same-scene hyperspectral image classification (HSIC), for the cross-scene classification, samples between source and target scenes are not drawn from the independent and identical distribution, resulting in significant performance degradation. To tackle this issue, a novel unsupervised domain adaptation (UDA) framework toward multilevel features and decision boundaries (ToMF-B) is proposed for the cross-scene HSIC, which can align task-related features and learn task-specific decision boundaries in parallel. Based on the maximum classifier discrepancy, a two-stage alignment scheme is proposed to bridge the interdomain gap and generate discriminative decision boundaries. In addition, to fully learn task-related and domain-confusing features, a convolutional neural network (CNN) and Transformer-based multilevel features extractor (generator) is developed to enrich the feature representation of two domains. Furthermore, to alleviate the harm even the negative transfer to UDA caused by task-irrelevant features, a task-oriented feature decomposition method is leveraged to enhance the task-related features while suppressing task-irrelevant features, and enabling the aligned domain-invariant features can be contributed to the classification task explicitly. Extensive experiments on three cross-scene HSI benchmarks have validated the effectiveness of the proposed framework.

Keywords: cross scene; classification; task; domain; decision boundaries

Journal Title: IEEE Transactions on Geoscience and Remote Sensing
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.