LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

MTU-Net: Multilevel TransUNet for Space-Based Infrared Tiny Ship Detection

Photo from wikipedia

Space-based infrared tiny ship detection aims at separating tiny ships from the images captured by Earth-orbiting satellites. Due to the extremely large image coverage area (e.g., thousands of square kilometers),… Click to show full abstract

Space-based infrared tiny ship detection aims at separating tiny ships from the images captured by Earth-orbiting satellites. Due to the extremely large image coverage area (e.g., thousands of square kilometers), candidate targets in these images are much smaller, dimer, and more changeable than those targets observed by aerial- and land-based imaging devices. Existing short imaging distance-based infrared datasets and target detection methods cannot be well adopted to the space-based surveillance task. To address these problems, we develop a space-based infrared tiny ship detection dataset (namely, NUDT-SIRST-Sea) with 48 space-based infrared images and $17\,598$ pixel-level tiny ship annotations. Each image covers about $10\,000$ km2 of area with $10 \ 000\,\, \times \ 10 \ 000$ pixels. Considering the extreme characteristics (e.g., small, dim, and changeable) of those tiny ships in such challenging scenes, we propose a multilevel TransUNet (MTU-Net) in this article. Specifically, we design a vision Transformer (ViT) convolutional neural network (CNN) hybrid encoder to extract multilevel features. Local feature maps are first extracted by several convolution layers and then fed into the multilevel feature extraction module [multilevel ViT module (MVTM)] to capture long-distance dependency. We further propose a copy–rotate–resize–paste (CRRP) data augmentation approach to accelerate the training phase, which effectively alleviates the issue of sample imbalance between targets and background. Besides, we design a FocalIoU loss to achieve both target localization and shape description. Experimental results on the NUDT-SIRST-Sea dataset show that our MTU-Net outperforms traditional and existing deep learning-based single-frame infrared small target (SIRST) methods in terms of probability of detection, false alarm rate, and intersection over union. Our code is available at https://github.com/TianhaoWu16/Multi-level-TransUNet-for-Space-based-Infrared-Tiny-ship-Detection

Keywords: tiny ship; detection; based infrared; space based

Journal Title: IEEE Transactions on Geoscience and Remote Sensing
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.