LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Maritime Ship Target Imaging With GNSS-Based Passive Multistatic Radar

Photo from wikipedia

In the field of maritime surveillance, the global navigation satellite system (GNSS)-based passive radar has proven its potential for moving target detection (MTD), localization, and velocity estimation. The next stage… Click to show full abstract

In the field of maritime surveillance, the global navigation satellite system (GNSS)-based passive radar has proven its potential for moving target detection (MTD), localization, and velocity estimation. The next stage is to investigate the possibility of obtaining the radar image of the moving ship for target recognition. However, the limited signal power budget of GNSS prevents the conventional inverse synthetic aperture radar technique that is based on target rotational motion and short observation time for GNSS-based passive radar imaging moving target. In this article, a two-stage imaging processing method relying on the target translational motion over a long observation time is proposed. The first stage confirms the presence of the target by a long-time MTD processing technique. In the second stage, based on the analysis of the Doppler history of the target signal in the slow-time domain, short-time Fourier transform and modified random sample consensus are combined to robustly estimate target velocity with reduced computation complexity. To obtain the focused bistatic image, azimuth compression is conducted by using the estimated target velocity. Finally, an image fusion operation is implemented to combine the bistatic images achievable from multiple satellites so that a multistatic image with high quality can be created. The effectiveness of the proposed method is confirmed by the real experimental results of three cargo ships illuminated by several satellites.

Keywords: time; based passive; ship target; radar; gnss based; target

Journal Title: IEEE Transactions on Geoscience and Remote Sensing
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.