As a result of dead-time, device on-state voltage drop, dc bus voltage measurement error, etc., volt-second errors degrade precise control of torque and flux linkage, particularly at low speeds. This… Click to show full abstract
As a result of dead-time, device on-state voltage drop, dc bus voltage measurement error, etc., volt-second errors degrade precise control of torque and flux linkage, particularly at low speeds. This is true for deadbeat-direct torque and flux control, which directly manipulates the volt-second vector sourced by inverters, as well as for indirect field oriented control drives. This paper introduces a real-time sensing scheme to measure the motor terminal volt-second vectors for each switching period with negligible phase lag. Based on the volt-second sensing, a model reference adaptive system-based approach is developed to decouple the volt-second errors from inverter nonlinearity, and dc bus voltage fluctuation and measurement error. By delivering an accurate volt-second vector for each switching period, torque and flux control accuracy, self-sensing performance, and parameter estimation accuracy are significantly enhanced.
               
Click one of the above tabs to view related content.