LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Mass Production of Nanocomposites Using Electrospinning

Photo from wikipedia

Many conventional polymer processing technologies for compounding micro-/nanocomposites are known in the field. These methods include the direct use of high shear mixers, roll mixers, Banbury mixers, and extruders. With… Click to show full abstract

Many conventional polymer processing technologies for compounding micro-/nanocomposites are known in the field. These methods include the direct use of high shear mixers, roll mixers, Banbury mixers, and extruders. With recent interest in advanced composites with nanoscale fillers, efforts have been made to enhance conventional processing technologies as the imposed input energy is often ineffective at breaching the energy barrier to breakup agglomerated nanofiller structures. Electrospinning is a simple, inexpensive process that can be used to produce continuous fibers from submicron to nanometer diameter scale through an electrically charged polymer jet. In this paper, authors present a rotary electrospinning method developed to produce nanocomposites at mass scale by using simultaneously mechanical and electrical forces with a proprietary apparatus. A case study using silica nanoparticles and silicone rubber matrix is presented to demonstrate the capability of the above method of dispersing nanoparticles in highly viscous polymer matrix materials.

Keywords: using electrospinning; nanocomposites using; production nanocomposites; mass production; polymer

Journal Title: IEEE Transactions on Industry Applications
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.