LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Prevention of Oscillatory False Triggering of GaN-FETs by Balancing Gate-Drain Capacitance and Common-Source Inductance

Photo by sotti from unsplash

Gallium-nitride-field-effect transistors (GaN-FETs) are promising switching devices with fast switching capability. However, they commonly have low gate threshold voltage, suffering from susceptibility to the false triggering. Particularly, the oscillatory false… Click to show full abstract

Gallium-nitride-field-effect transistors (GaN-FETs) are promising switching devices with fast switching capability. However, they commonly have low gate threshold voltage, suffering from susceptibility to the false triggering. Particularly, the oscillatory false triggering, i.e., a self-sustaining repetitive false triggering, can occur after a fast switching, which is a severe obstacle for industrial applications. The purpose of this paper is to elucidate the design instruction for preventing this phenomenon. The oscillatory false triggering is known to be caused by the parasitic oscillator circuit formed of a GaN-FET, its parasitic capacitance and the parasitic inductance of the wiring. This paper analyzed the nonoscillatory condition of this oscillator. The result revealed an appropriate ratio between the gate-drain capacitance and the common-source inductance is a key to prevent the oscillatory false triggering. Experiment successfully verified this analysis result, supporting the effectiveness of the appropriate design of this ratio for preventing the oscillatory false triggering.

Keywords: false triggering; gan fets; oscillatory false; gate; inductance; capacitance

Journal Title: IEEE Transactions on Industry Applications
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.