LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Accurate and Easy-to-Obtain Iron Loss Model for Electric Machine Design

Photo from wikipedia

Iron loss modeling is crucial for electric machine design. However, current models feature severe drawbacks. They are 1) very complex, and thus, can hardly be applied, 2) require very high… Click to show full abstract

Iron loss modeling is crucial for electric machine design. However, current models feature severe drawbacks. They are 1) very complex, and thus, can hardly be applied, 2) require very high effort for measuring and computation, and/or 3) are not very accurate. In this paper, a new modeling technique is introduced for calculating the instantaneous power loss in ferromagnetic materials without taking the magnetization history into account. A standard measurement setup and specimen shape is used. The considered approach comprises the required measurements, the nonlinear loss modeling by itself, and an extensive verification for different flux density waveforms and frequencies. In addition, a detailed qualitative comparison to well-known iron loss models is given. The presented technique gives very accurate results, while obtaining the model is comparably easy. Moreover, as the calculation of the instantaneous losses is not based on the previous magnetization state of the material, a modeling error for a particular instant of time has no impact on the subsequently calculated characteristics. In the future, this model should ensure a more accurate iron loss calculation for electric machine designs.

Keywords: iron loss; electric machine; model; machine design; loss

Journal Title: IEEE Transactions on Industrial Electronics
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.