LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A SiC Power MOSFET Loss Model Suitable for High-Frequency Applications

Photo from wikipedia

The reduced chip size and unipolar current conduction mechanism make silicon carbide (SiC) metal–oxide–semiconductor field-effect transistors (MOSFETs) suitable for high-frequency power electronics applications. Modeling the switching process of the SiC… Click to show full abstract

The reduced chip size and unipolar current conduction mechanism make silicon carbide (SiC) metal–oxide–semiconductor field-effect transistors (MOSFETs) suitable for high-frequency power electronics applications. Modeling the switching process of the SiC power MOSFET with parasitic components is important for achieving higher efficiency and power density system design. Therefore, this paper proposes a new concise yet accurate switching loss model for SiC power MOSFETs. Addressing the limitations in experimental measurements, numerical simulations are conducted to validate the proposed model taking the output capacitance Coss discharge and charge into consideration. The role of the parasitic components in the second-order model is discussed in depth for switching losses. Furthermore, this paper also provides guidelines in designing the gate driver for ultrafast SiC power MOSFETs.

Keywords: high frequency; suitable high; power; power mosfet; model; sic power

Journal Title: IEEE Transactions on Industrial Electronics
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.