LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Simple Active and Reactive Power Control for Applications of Single-Phase Electric Springs

Photo by acfb5071 from unsplash

Aiming at effective power management in microgrids with high penetration of renewable energy sources (RESs), this paper proposes a simple power control for the so-called second-generation, single-phase electric springs (ES-2),… Click to show full abstract

Aiming at effective power management in microgrids with high penetration of renewable energy sources (RESs), this paper proposes a simple power control for the so-called second-generation, single-phase electric springs (ES-2), which overcomes the shortcomings of the existing ES control methods. By the proposed control, the unpredictable power generated from RESs is divided into two parts, i.e., the one absorbed by the ES-2 that still varies and the other injected into the grid that is controllable by a simple and accurate signal manipulation that works both at steady-state and during RES transients. It is believed that such a control is suitable for the distributed power generation, especially at domestic homes. In this paper, the proposed control is supported by a theoretical background. Its effectiveness is at first validated by simulations and then by experiments. To this purpose, a typical RES application is considered, and an experimental setup is arranged, built up around an ES-2 implementing the proposed control. Testing of the setup is carried out in three steps and proves not only the smooth operation of the ES-2 itself, but also its capability in running the application properly.

Keywords: electric springs; control; power; phase electric; power control; single phase

Journal Title: IEEE Transactions on Industrial Electronics
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.