Conventionally, standard proportional and integral (PI) controllers with constant PI gains are commonly used for the dc-link voltage control of single-phase grid-connected converters (GCCs). For such controllers, the selection of… Click to show full abstract
Conventionally, standard proportional and integral (PI) controllers with constant PI gains are commonly used for the dc-link voltage control of single-phase grid-connected converters (GCCs). For such controllers, the selection of the PI gains will lead to a tradeoff between two control objectives: 1) the reduction of the dc-link voltage fluctuations caused by random swings of the active power drawn by the single-phase GCC; and 2) the reduction of the grid current harmonics mainly caused by the 2f oscillation of the active power in single-phase applications. To solve this tradeoff, this paper presents a systematic approach for the design of an adaptive PI controller for the dc-link voltage control of single-phase GCCs. The proposed design approach is simple and it provides a convenient method to properly determine the adaptive PI controller parameters. Representative simulation and experimental results are presented and discussed in order to show the effectiveness of the proposed dc-link voltage controller.
               
Click one of the above tabs to view related content.