Finding and tracking maximum power point are two important dynamics in the control of variable-speed wind turbines since they determine the efficiency of wind turbines. The conventional hill climbing possesses… Click to show full abstract
Finding and tracking maximum power point are two important dynamics in the control of variable-speed wind turbines since they determine the efficiency of wind turbines. The conventional hill climbing possesses the problems of wrong directionality and low performance since it does not take the inertial effect into account. In this paper, a novel hill climbing method is proposed by considering the inertial effect to solve these problems. Besides, employing the exact model knowledge of the generator in the maximum power tracking control deteriorates the efficiency considerably; therefore, it is required to design a parameter independent and robust control system if possible. Thus, the third-order super-twisting sliding mode and continuous integral sliding mode controllers are designed for the control of generator and grid-side converters to track the maximum power trajectory accurately, and they are compared to each other for the chattering in experimental results. A comparison is also performed between the conventional and proposed hill climbing methods based on the captured energy from the wind. Experimental results, with a wind turbine emulator, demonstrate that the proposed hill climbing method relaxes the wrong directionality and sluggish performance of the conventional one.
               
Click one of the above tabs to view related content.