LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Uncertainty and Disturbance Estimator-Based Control of a Flapping-Wing Aerial Vehicle With Unknown Backlash-Like Hysteresis

Photo from wikipedia

Robust and accurate control of a flapping-wing aerial vehicle (FWAV) system is a challenging problem due to the existence of backlash-like hysteresis nonlinearity. This paper proposes uncertainty and disturbance estimator… Click to show full abstract

Robust and accurate control of a flapping-wing aerial vehicle (FWAV) system is a challenging problem due to the existence of backlash-like hysteresis nonlinearity. This paper proposes uncertainty and disturbance estimator (UDE)-based control with output feedback for FWAV systems. The approach enables the acquisition of the approximate plant model with only a partial knowledge of system parameters. For the design of the controller, only the bandwidth information of the unknown plant model is needed, which is available through the UDE filter. The stability analysis of the closed-loop system with the UDE-based controller is presented. It is shown that the proposed control scheme can ensure the boundedness of the control signals. A number of numerical simulations are carried out to demonstrate the satisfactory trajectory tracking performance of the proposed method.

Keywords: flapping wing; control; control flapping; backlash like; wing aerial; aerial vehicle

Journal Title: IEEE Transactions on Industrial Electronics
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.