LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Harvesting Circuit for Flexible Thin-Film Piezoelectric Generator Achieving 562% Energy Extraction Improvement With Load Screening

Photo from wikipedia

In this article, a novel energy harvesting (EH) interface for a flexible thin-film piezoelectric generator (FPEG) is proposed for EH from irregular human motion. The traditional thick piezoelectric generator (PEG)… Click to show full abstract

In this article, a novel energy harvesting (EH) interface for a flexible thin-film piezoelectric generator (FPEG) is proposed for EH from irregular human motion. The traditional thick piezoelectric generator (PEG) based kinetic EH circuits are designed for continuous and sinusoidal inputs from the cantilever-based structures and are not suitable for EH from irregular human motion. The proposed EH interface circuit significantly enhances energy extraction with a load-screening scheme, which minimizes the load capacitance to maximize the PEG output voltage up to 102 V while using the standard voltage 0.18-μm process. An energy-aware wake-up controller is designed to (monitor and) detect the FPEG deformation to assure that the harvesting interface is only activated when enough energy is available for EH. When the FPEG voltage peaks, the energy is transferred to the battery through an inductor with a single-cycle buck-converter-like operation, allowing the input voltage and frequency-independent EH operation. The measurement results show that the proposed EH interface successfully harvests energy from irregular pulsed inputs with 562% improvement compared with a full-bridge rectifier.

Keywords: piezoelectric generator; energy; thin film; flexible thin; film piezoelectric

Journal Title: IEEE Transactions on Industrial Electronics
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.