LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Robust Fuzzy-Fractional-Order Nonsingular Terminal Sliding-Mode Control of LCL-Type Grid-Connected Converters

Photo by kellysikkema from unsplash

Sliding-mode control (SMC) has been widely used in grid-connected converter system (GCC) systems because of its robustness to parameter variations and external disturbances. However, chattering in SMC may deteriorate the… Click to show full abstract

Sliding-mode control (SMC) has been widely used in grid-connected converter system (GCC) systems because of its robustness to parameter variations and external disturbances. However, chattering in SMC may deteriorate the tracking accuracy and can easily excite high-frequency unmodeled dynamics. To solve this problem, this article presents a fuzzy-fractional-order nonsingular terminal sliding-mode controller (Fuzzy-FONTSMC) for the grid current control of LCL–GCCs. First, the system modeling, design of the integer-order NTSMC controller, and state estimation based on the Kalman filter to minimize the sampling sensors are described. Second, the Fuzzy-FONTSMC controller is introduced for optimal fraction-order selection and chattering mitigation, this controller exhibits fast convergence with high tracking accuracy and strong robustness. Finally, the Lyapunov theorem is used to analyze the system stability. Experimental comparisons on a 10-kVA laboratory prototype validate the superior performance and effectiveness of the proposed method under many scenarios.

Keywords: grid connected; order; fuzzy fractional; mode control; sliding mode

Journal Title: IEEE Transactions on Industrial Electronics
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.