LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Cooperative Distributed GPU Power Capping for Deep Learning Clusters

Photo from wikipedia

The recent GPU-based clusters that handle deep learning (DL) tasks have the features of GPU device heterogeneity, a variety of deep neural network (DNN) models, and high computational complexity. Thus,… Click to show full abstract

The recent GPU-based clusters that handle deep learning (DL) tasks have the features of GPU device heterogeneity, a variety of deep neural network (DNN) models, and high computational complexity. Thus, the traditional power capping methods for CPU-based clusters or small-scale GPU devices cannot be applied to the GPU-based clusters handling DL tasks. This article develops a cooperative distributed GPU power capping (CD-GPC) system for GPU-based clusters, aiming to minimize the training completion time of invoked DL tasks without exceeding the limited power budget. Specifically, we first design the frequency scaling approach using the online model estimation based on the recursive least square method. This approach achieves the accurate tuning for DL task training time and power usage of GPU devices without needing offline profiling. Then, we formulate the proposed FS problem as a Lagrangian dual decomposition-based economic model predictive control problem for large-scale heterogeneous GPU clusters. We conduct both the NVIDIA GPU-based lab-scale real experiments and real job trace-based simulation experiments for performance evaluation. Experimental results validate that the proposed system improves the power capping accuracy to have a mean absolute error of $< \!1\%$, and reduces the deadline violation ratio of invoked DL tasks by 21.5% compared with other recent counterparts.

Keywords: gpu based; deep learning; based clusters; power; power capping

Journal Title: IEEE Transactions on Industrial Electronics
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.