Accurate rotor position estimation is important to ensure the high-performance operation of position sensorless permanent magnet synchronous motor (PMSM) drives. To suppress the estimated rotor position harmonic error (ERPHE) caused… Click to show full abstract
Accurate rotor position estimation is important to ensure the high-performance operation of position sensorless permanent magnet synchronous motor (PMSM) drives. To suppress the estimated rotor position harmonic error (ERPHE) caused by inverter nonlinearities, flux spatial harmonics, and the current measurement error in high-frequency signal injection based schemes, an adaptive iterative learning control based online suppression method is proposed in this paper. This method constructs a P-type iterative learning rotor position observer with the forgetting factor to obtain the tracking error and generate the compensation value in real time. The stability, the convergence, and the parameter sensitivity of this observer are analyzed in detail. To improve the suppression effect of the ERPHE for different loads and speeds, an iterative learning gain self-tuning strategy is investigated. The proposed method does not require the offline detection and the discrimination of harmonic frequencies, which has strong suppression ability for different harmonic error components. The effectiveness is verified by experiments on a 2.2-kW interior PMSM drive platform.
               
Click one of the above tabs to view related content.