LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

On Active Disturbance Rejection Control in Presence of Measurement Noise

Photo by ries_bosch from unsplash

High-gain nature of extended state observer (ESO), which forms an integral part of active disturbance rejection control (ADRC) technique, results in the following limitations: 1) Sensitivity to high-frequency measurement noise… Click to show full abstract

High-gain nature of extended state observer (ESO), which forms an integral part of active disturbance rejection control (ADRC) technique, results in the following limitations: 1) Sensitivity to high-frequency measurement noise which limits closed-loop performance in practical applications. 2) Escalation of observer gains up to a power $\boldsymbol{n+1}$ of observer bandwidth, which complicates numerical implementation when system order $(\boldsymbol{n})$ or observer bandwidth is large. To overcome these limitations, a low-power higher order ESO is proposed in the present work for practical application of ADRC scheme in noisy environment. Moreover, a recently proposed cascade ESO (CESO), designed for noise suppression, is analyzed in the frequency-domain to reveal an underlying similarity with higher-order ESO, which is not reported in literature. Presented analysis justifies the performance improvement obtained over conventional ESO and provides a guideline for selecting the number of cascade levels based on the expected nature of disturbance. Case study performed on a dc–dc boost converter illustrates the practical advantages of proposed scheme over CESO in terms of improved immunity to high-frequency measurement noise, precise regulation in presence of time-varying disturbance, low observer gains that facilitate numerical implementation, and ease of tuning due to a single observer parameter.

Keywords: disturbance; rejection control; disturbance rejection; measurement noise; active disturbance

Journal Title: IEEE Transactions on Industrial Electronics
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.