LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Decoupling Synchronous Control Method of Two Motors for Large Optical Telescope

Photo by sushioutlaw from unsplash

Aiming at the problem of two motors system of a large optical telescope, a feedforward friction compensated linear active disturbance rejection control (FFLADRC) algorithm is proposed in this article. The… Click to show full abstract

Aiming at the problem of two motors system of a large optical telescope, a feedforward friction compensated linear active disturbance rejection control (FFLADRC) algorithm is proposed in this article. The algorithm consists of a friction compensated linear active disturbance rejection control (FLADRC) and two nonlinear tracking differentiators (NTDs). The FLADRC realizes the control of the two motors system by decoupling and compensates the friction. The NTDs are used to generate reference position, velocity, and acceleration signals. First, a mathematical model of the two motors system is established. Second, the FFLADRC algorithm is derived using the idea of decoupling. Third, the parameters tuning method of the FFLADRC is given. Fourth, the stability and synchronization mechanisms of the algorithm are analyzed. Finally, the experiments are carried out on a large optical telescope. In the experiments, single motor control, master–slave control, cross-coupling control, and FFLADRC are compared. The results show that FFLADRC has the minimum synchronization error and tracking error, which verifies the effectiveness of the proposed algorithm.

Keywords: optical telescope; large optical; two motors; control; method

Journal Title: IEEE Transactions on Industrial Electronics
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.