LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

RNN-SM: Fast Steganalysis of VoIP Streams Using Recurrent Neural Network

Photo by urielsc26 from unsplash

Quantization index modulation (QIM) steganography makes it possible to hide secret information in voice-over IP (VoIP) streams, which could be utilized by unauthorized entities to set up covert channels for… Click to show full abstract

Quantization index modulation (QIM) steganography makes it possible to hide secret information in voice-over IP (VoIP) streams, which could be utilized by unauthorized entities to set up covert channels for malicious purposes. Detecting short QIM steganography samples, as is required by real circumstances, remains an unsolved challenge. In this paper, we propose an effective online steganalysis method to detect QIM steganography. We find four strong codeword correlation patterns in VoIP streams, which will be distorted after embedding with hidden data. To extract those correlation features, we propose the codeword correlation model, which is based on recurrent neural network (RNN). Furthermore, we propose the feature classification model to classify those correlation features into cover speech and stego speech categories. The whole RNN-based steganalysis model (RNN-SM) is trained in a supervised learning framework. Experiments show that on full embedding rate samples, RNN-SM is of high detection accuracy, which remains over 90% even when the sample is as short as 0.1 s, and is significantly higher than other state-of-the-art methods. For the challenging task of conducting steganalysis towards low embedding rate samples, RNN-SM also achieves a high accuracy. The average testing time for each sample is below 0.15% of sample length. These clues show that RNN-SM meets the short sample detection demand and is a state-of-the-art algorithm for online VoIP steganalysis.

Keywords: steganalysis; rnn; recurrent neural; voip streams; neural network

Journal Title: IEEE Transactions on Information Forensics and Security
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.