Visible thermal person re-identification (VT-REID) is a task of matching person images captured by thermal and visible cameras, which is an extremely important issue in night-time surveillance applications. Existing cross-modality… Click to show full abstract
Visible thermal person re-identification (VT-REID) is a task of matching person images captured by thermal and visible cameras, which is an extremely important issue in night-time surveillance applications. Existing cross-modality recognition works mainly focus on learning sharable feature representations to handle the cross-modality discrepancies. However, apart from the cross-modality discrepancy caused by different camera spectrums, VT-REID also suffers from large cross-modality and intra-modality variations caused by different camera environments and human poses, and so on. In this paper, we propose a dual-path network with a novel bi-directional dual-constrained top-ranking (BDTR) loss to learn discriminative feature representations. It is featured in two aspects: 1) end-to-end learning without extra metric learning step and 2) the dual-constraint simultaneously handles the cross-modality and intra-modality variations to ensure the feature discriminability. Meanwhile, a bi-directional center-constrained top-ranking (eBDTR) is proposed to incorporate the previous two constraints into a single formula, which preserves the properties to handle both cross-modality and intra-modality variations. The extensive experiments on two cross-modality re-ID datasets demonstrate the superiority of the proposed method compared to the state-of-the-arts.
               
Click one of the above tabs to view related content.