LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Distributed Control of PEV Charging Based on Energy Demand Forecast

Photo from wikipedia

This paper presents a new distributed smart charging strategy for grid integration of plug-in electric vehicles (PEVs). The main goal is to smooth the daily grid load profile while ensuring… Click to show full abstract

This paper presents a new distributed smart charging strategy for grid integration of plug-in electric vehicles (PEVs). The main goal is to smooth the daily grid load profile while ensuring that each PEV has a desired state of charge level at the time of departure. Communication and computational overhead, and PEV user privacy are also considered during the development of the proposed strategy. It consists of two stages: 1) an offline process to estimate a reference operating power level based on the forecasted mobility energy demand and base loading profile, and 2) a real-time process to determine the charging power for each PEV so that the aggregated load tracks the reference loading level. Tests are carried out both on primary and secondary distribution networks for different heuristic charging scenarios and PEV penetration levels. Results are compared to that of the optimal solution and other state-of-the-art techniques in terms of variance and peak values, and shown to be competitive. Finally, a real vehicle test implementation is done using a commercial-of-the-shelf charging station and an electric vehicle.

Keywords: energy demand; control pev; distributed control; pev

Journal Title: IEEE Transactions on Industrial Informatics
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.