LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Sustainable Service Allocation Using a Metaheuristic Technique in a Fog Server for Industrial Applications

Photo from wikipedia

Reducing energy consumption in the fog computing environment is both a research and an operational challenge for the current research community and industry. There are several industries such as finance… Click to show full abstract

Reducing energy consumption in the fog computing environment is both a research and an operational challenge for the current research community and industry. There are several industries such as finance industry or healthcare industry that require a rich resource platform to process big data along with edge computing in fog architecture. As a result, sustainable computing in a fog server plays a key role in fog computing hierarchy. The energy consumption in fog servers depends on the allocation techniques of services (user requests) to a set of virtual machines (VMs). This service request allocation in a fog computing environment is a nondeterministic polynomial-time hard problem. In this paper, the scheduling of service requests to VMs is presented as a bi-objective minimization problem, where a tradeoff is maintained between the energy consumption and makespan. Specifically, this paper proposes a metaheuristic-based service allocation framework using three metaheuristic techniques, such as particle swarm optimization (PSO), binary PSO, and bat algorithm. These proposed techniques allow us to deal with the heterogeneity of resources in the fog computing environment. This paper has validated the performance of these metaheuristic-based service allocation algorithms by conducting a set of rigorous evaluations.

Keywords: service allocation; fog; fog server; allocation; fog computing

Journal Title: IEEE Transactions on Industrial Informatics
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.