Reactive power planning problem is the key to secure and economic operation of power systems. Optimal management of existing reactive sources leads to loss minimization and economic performance of the… Click to show full abstract
Reactive power planning problem is the key to secure and economic operation of power systems. Optimal management of existing reactive sources leads to loss minimization and economic performance of the system. Because of the nonlinear inter-relation between the physical parameters of the electric grid, this problem is a highly nonlinear and nonconvex constrained optimization problem. The application of semidefinite programming (SDP) to power system problems has recently gained considerable research attention. A recent SDP formulation uses a convex relaxation to the nonconvex optimal power flow problem under some technical conditions. This paper proposes a novel equivalent convex optimization formulation for the optimal reactive power dispatch (ORPD) problem and presents a new framework for finding the global optimum. Numerical results for the IEEE 30-bus and 118-bus test systems show that the proposed scheme obtains the optimum operation point and outperforms various state-of-the-art methods significantly.
               
Click one of the above tabs to view related content.