LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Deep Hybrid State Network With Feature Reinforcement for Intelligent Fault Diagnosis of Delta 3-D Printers

Photo from wikipedia

An echo state network (ESN) is a type of recurrent neural network that is good at processing time-series data with dynamic behavior. However, the use of ESNs to enhance fault-classification… Click to show full abstract

An echo state network (ESN) is a type of recurrent neural network that is good at processing time-series data with dynamic behavior. However, the use of ESNs to enhance fault-classification accuracy continues to be challenging when the condition signals are collected by low-cost sensors. In this paper, a deep network algorithm, called a deep hybrid state network (DHSN), is proposed for fault diagnosis of three-dimensional printers using attitude data with low measurement precision. In the DHSN, the output data of a sparse auto-encoder are regarded as the abstract features of a double-structured ESN (DESN). The DESN is designed for feature reinforcement and fault recognition, wherein the first function reinforces the features and the second is used for fault classification. More specifically, feature reinforcement is developed to improve the clustering performance and replace the traditional overall feedback fine-tuning in deep models. This strategy improves learning efficiency and overcomes the vanishing-gradient problem for deep learning. The forecasting performance of the proposed approach is evaluated in experiments, and its superiority is demonstrated through comparison with other intelligent fault-diagnosis technologies.

Keywords: feature reinforcement; fault diagnosis; state network; network; fault

Journal Title: IEEE Transactions on Industrial Informatics
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.