The irregular and truncated probabilistic characteristics of wind power uncertainty lead to unknown influences on the power system operation. In this article, we propose a new probabilistic optimal power flow… Click to show full abstract
The irregular and truncated probabilistic characteristics of wind power uncertainty lead to unknown influences on the power system operation. In this article, we propose a new probabilistic optimal power flow (POPF) framework, which can cope with such uncertainties, while taking into account the correlations among the wind generation power in multiple wind farms. A truncated multivariate Gaussian mixture model (Trun-MultiGMM) is designed to describe the irregular and multimodal wind power distributions with its typical truncation feature. Then an efficient Markov chain quasi-Monte-Carlo (MCQMC) sampler is developed to deliver wind power samples from the customized Trun-MultiGMM. Numerical simulations are conducted on the publicly available wind generation datasets and multiple benchmark power systems. The results have verified the effectiveness and efficiency of Trun-MultiGMM as well as the proposed POPF framework with MCQMC sampler.
               
Click one of the above tabs to view related content.