With the advent of 5G, the industrial Internet of Things has developed rapidly. The industrial sensor-cloud system (SCS) has also received widespread attention. In the future, a large number of… Click to show full abstract
With the advent of 5G, the industrial Internet of Things has developed rapidly. The industrial sensor-cloud system (SCS) has also received widespread attention. In the future, a large number of integrated sensors that simultaneously collect multifeature data will be added to industrial SCS. However, the collected big data are not trustworthy due to the harsh environment of the sensor. If the data collected at the bottom networks are directly uploaded to the cloud for processing, the query and data mining results will be inaccurate, which will seriously affect the judgment and feedback of the cloud. The traditional method of relying on sensor nodes for data cleaning is insufficient to deal with big data, whereas edge computing provides a good solution. In this article, a new data cleaning method is proposed based on the mobile edge node during data collection. An angle-based outlier detection method is applied at the edge node to obtain the training data of the cleaning model, which is then established through support vector machine. Besides, online learning is adopted for model optimization. Experimental results show that multidimensional data cleaning based on mobile edge nodes improves the efficiency of data cleaning while maintaining data reliability and integrity, and greatly reduces the bandwidth and energy consumption of the industrial SCS.
               
Click one of the above tabs to view related content.