LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

NOMA-Based Resource Allocation for Cluster-Based Cognitive Industrial Internet of Things

The development of Industrial Internet of Things (IIoT) has been limited due to the shortage of spectrum resources. Based on cognitive radio, the cognitive IIoT (CIIoT) has been proposed to… Click to show full abstract

The development of Industrial Internet of Things (IIoT) has been limited due to the shortage of spectrum resources. Based on cognitive radio, the cognitive IIoT (CIIoT) has been proposed to improve spectrum utilization via sensing and accessing the idle spectrum. To improve sensing and transmission performance of the CIIoT, a cluster-based CIIoT is proposed, in this article, wherein the cluster heads perform cooperative spectrum sensing to get available spectrum, and the nodes transmit via nonorthogonal multiple access (NOMA). The frame structure of the CIIoT is designed, and the spectrum access probability and average total throughput of the CIIoT are deduced. A joint resource optimization for sensing time, node powers, and the number of clusters is formulated to maximize the average total throughput. The optimal solution is obtained via sensing and power optimization. The clustering algorithm and cluster head alternation are proposed to improve transmission performance and ensure energy balance, respectively. The simulations have indicated that the NOMA for the cluster-based CIIoT can better guarantee the transmission performance of each node, especially the node decoded first, than the traditional NOMA and orthogonal multiple access.

Keywords: cluster; cluster based; internet things; industrial internet; spectrum; ciiot

Journal Title: IEEE Transactions on Industrial Informatics
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.