Cognitive computing, a revolutionary AI concept emulating human brain's reasoning process, is progressively flourishing in the Industry 4.0 automation. With the advancement of various AI and machine learning technologies the… Click to show full abstract
Cognitive computing, a revolutionary AI concept emulating human brain's reasoning process, is progressively flourishing in the Industry 4.0 automation. With the advancement of various AI and machine learning technologies the evolution toward improved decision making as well as data-driven intelligent manufacturing has already been evident. However, several emerging issues, including the poisoning attacks, performance, and inadequate data resources, etc., have to be resolved. Recent research works studied the problem lightly, which often leads to unreliable performance, inefficiency, and privacy leakage. In this article, we developed a decentralized paradigm for big data-driven cognitive computing (D2C), using federated learning and blockchain jointly. Federated learning can solve the problem of “data island” with privacy protection and efficient processing while blockchain provides incentive mechanism, fully decentralized fashion, and robust against poisoning attacks. Using blockchain-enabled federated learning help quick convergence with advanced verifications and member selections. Extensive evaluation and assessment findings demonstrate D2C's effectiveness relative to existing leading designs and models.
               
Click one of the above tabs to view related content.