LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Adaptive Droop-Based Hierarchical Optimal Voltage Control Scheme for VSC-HVdc Connected Offshore Wind Farm

Photo from wikipedia

An adaptive droop-based hierarchical optimal voltage control (DHOVC) scheme is proposed for voltage-source converter high-voltage-direct-current (VSC-HVdc) connected offshore wind farms (WFs). The wind turbines (WTs) and WF side VSC (WFVSC)… Click to show full abstract

An adaptive droop-based hierarchical optimal voltage control (DHOVC) scheme is proposed for voltage-source converter high-voltage-direct-current (VSC-HVdc) connected offshore wind farms (WFs). The wind turbines (WTs) and WF side VSC (WFVSC) are coordinated to minimize the voltage deviations of buses inside the WF from the nominal voltage and mitigate reactive power (Var) fluctuations of WTs. The model predictive control is used to improve the performance of the DHOVC scheme during a certain predictive horizon. A hierarchical solution method based on the alternating direction method of multipliers is developed to reduce the calculation burden of the central controller while improving the information privacy protection. During the predictive horizon, the WTs and WFVSC are coordinated to achieve the near global optimal performance without global information. A WF with 32 × 5MW WTs was used in the MATLAB/Simulink to test the proposed DHOVC scheme.

Keywords: vsc; control; voltage; scheme; droop based; adaptive droop

Journal Title: IEEE Transactions on Industrial Informatics
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.