LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Lightweight Computational Intelligence for IoT Health Monitoring of Off-Road Vehicles: Enhanced Selection Log-Scaled Mutation GA Structured ANN

Photo by owenbeard from unsplash

Smart monitoring of off-road vehicles is cursed by their complex and expensive IoT sensors technologies. High dependence on the cloud/fog computation, availability of the network, and expert knowledge make it… Click to show full abstract

Smart monitoring of off-road vehicles is cursed by their complex and expensive IoT sensors technologies. High dependence on the cloud/fog computation, availability of the network, and expert knowledge make it handicap in the rural off-network areas. Use of edge devices, such as smartphones, attributed by computation capabilities is the solution that is yet to be developed at commercial level (Fawwaz and Chung 2020) and (Zhengwei et al., 2021). Additionally, the user's growing demand for economic and user-friendly technology motivates to shift from costly and complex sensors to economic. In this article, we present the hybridized computational intelligence methodology to develop an edge-device-enabled AI technology for health monitoring and diagnosis (HM&D) of the off-road vehicles, taking use of super economic microphones as sensors. Smartphones are benefited by integrated microphones, and thus, the App-based developed technology is generalized for all vehicles from old to new. Enhanced selection and log-scaled mutation genetic algorithms is used to evolve the structure of the artificial neural network toward an optimally lightweight structure. Each evolved lightweight ANN structure is trained by scaled conjugate gradient back-propagation training algorithm to optimize corresponding weights and biases. The comparative results with currently reported genetic algorithms for edge computation prove it a breakthrough technology for edge-device-enabled HM&D of off-road vehicles (Yan et al., 2020).

Keywords: road; enhanced selection; health monitoring; road vehicles; monitoring road; computational intelligence

Journal Title: IEEE Transactions on Industrial Informatics
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.