LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Blockchain-Based Fully Peer-to-Peer Energy Trading Strategies for Residential Energy Systems

Photo from wikipedia

This paper proposes two novel strategies for determining the bilateral trading preferences of households participating in a fully Peer-to-Peer (P2P) local energy market. The first strategy matches between surplus power… Click to show full abstract

This paper proposes two novel strategies for determining the bilateral trading preferences of households participating in a fully Peer-to-Peer (P2P) local energy market. The first strategy matches between surplus power supply and demand of participants, while the second is based on the distance between them in the network. The impact of bilateral trading preferences on the price and amount of energy traded is assessed for the two strategies. A decentralized fully P2P energy trading market is developed to generate the results in a day-ahead setting. After that, a permissioned blockchain-smart contract platform is used for the implementation of the decentralized P2P trading market on a digital platform. Actual data from a residential neighborhood in the Netherlands, with different varieties of distributed energy resources, is used for the simulations. Results show that in the two strategies, the energy procurement cost and grid interaction of all participants in P2P trading are reduced compared to a baseline scenario. The total amount of P2P energy traded is found to be higher when the trading preferences are based on distance, which could also be considered as a proxy for energy efficiency in the network by encouraging P2P trading among nearby households. However, the P2P trading prices in this strategy are found to be lower. Further, a comparison is made between two scenarios: with and without electric heating in households. Although the electrification of heating reduces the total amount of P2P energy trading, its impact on the trading prices is found to be limited.

Keywords: energy trading; trading; p2p trading; energy; fully peer; peer peer

Journal Title: IEEE Transactions on Industrial Informatics
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.