LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Hybrid-Order Gated Graph Neural Network for Session-Based Recommendation

Photo by yanots from unsplash

Considering sessions as directed subgraphs, graph neural networks (GNNs) are supposed to be capable of capturing the complex dependencies among items and suitable for session-based recommendation. However, deep GNNs suffer… Click to show full abstract

Considering sessions as directed subgraphs, graph neural networks (GNNs) are supposed to be capable of capturing the complex dependencies among items and suitable for session-based recommendation. However, deep GNNs suffer from the oversmoothing problem of making all nodes converge to the same value. In session-based recommendation, the subgraphs transformed by short sessions are usually simple, which cause worse oversmoothing problem. To apply GNNs to session-based recommendation sufficiently, in this article, we propose a hybrid-order gated GNN (HGNN) on account of the oversmoothing problem. The proposed HGNN model is based on the hybrid-order propagation, which avoids insignificant patterns and captures complex dependencies in propagation. What's more, the attention mechanism is utilized to learn different weights of orders in propagation. Then, HGNN is applied to session-based recommendation, which results in a new method called SR-HGNN. Experimental results show that SR-HGNN outperforms the state-of-the-art session-based recommendation methods and eases the oversmoothing problem.

Keywords: hybrid order; based recommendation; session based

Journal Title: IEEE Transactions on Industrial Informatics
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.