LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Secure User Authentication Leveraging Keystroke Dynamics via Wi-Fi Sensing

Photo by bugsster from unsplash

User authentication plays a critical role in access control of a man-machine system, where the knowledge factor, such as a personal identification number, constitutes the most widely used authentication element.… Click to show full abstract

User authentication plays a critical role in access control of a man-machine system, where the knowledge factor, such as a personal identification number, constitutes the most widely used authentication element. However, knowledge factors are usually vulnerable to the spoofing attack. Recently, the inheritance factor, such as fingerprints, emerges as an efficient alternative resilient to malicious users, but it normally requires special equipment. To this end, in this article, we propose WiPass, a device-free authentication system only leveraging the pervasive Wi-Fi infrastructure to explore keystroke dynamics (manner and rhythm of keystrokes) captured by the channel state information to recognize legitimate users while rejecting spoofers. However, it remains an open challenge to characterize the behavioral features hidden in the human subtle motions, such as keystrokes. Therefore, we build a signal enhancement model using Ricean distribution to amplify user keystroke dynamics and a hybrid learning model for user authentication, which consists of two parts, i.e., convolutional neural network based feature extraction and support vector machine based classification. The former relies on visualizing the channel responses into time-series images to learn the behavioral features of keystrokes in energy and spectrum domains, whereas the latter exploits such behavioral features for user authentication. We prototype WiPass on the low-cost off-the-shelf Wi-Fi devices and verify its performance. Empirical results show that WiPass achieves on average 92.1% authentication accuracy, 5.9% false accept rate, and 6.3% false reject rate in three real environments.

Keywords: authentication; authentication leveraging; user authentication; secure user; keystroke dynamics; behavioral features

Journal Title: IEEE Transactions on Industrial Informatics
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.