LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

An Integrated Design Scheme for SKR-Based Data-Driven Dynamic Fault Detection Systems

Photo by campaign_creators from unsplash

In this article, an integrated design diagram for a stable kernel representation (SKR)-based data-driven fault detection (FD) system and performance criteria is proposed for stochastic dynamic systems in the probabilistic… Click to show full abstract

In this article, an integrated design diagram for a stable kernel representation (SKR)-based data-driven fault detection (FD) system and performance criteria is proposed for stochastic dynamic systems in the probabilistic sense. A new distributionally robust FD system is developed using input and output data in the absence of a system model and perfect probability distributions for noises and random faults. To be specific, an SKR-based data-driven primary residual generator is first constructed. By introducing the so-called mean-covariance based ambiguity sets, families of probability distributions of the primary residual in fault-free and the concerned multiple faulty cases are characterized. The FD system design is then formulated as a distributionally robust optimization problem in the sense of minimizing the missed detection rate (MDR) with a predefined upper bound of false alarm rate (FAR). With the aid of worst-case conditional value-at-risk, a matrix-valued distribution independent solution to the targeting FD problem is derived without posing specific distribution assumptions. The developed FD system is, thus, robust against the distributional uncertainties of noises and random faults. Simultaneously, a tighter upper bound of MDR for an identical FAR criterion is achieved in comparison with the vector-valued distributionally robust FD method. An experimental study on a laboratory setup of a three-tank system shows the applicability of the proposed method.

Keywords: system; based data; skr based; integrated design; detection; data driven

Journal Title: IEEE Transactions on Industrial Informatics
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.