LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Learning-Based Context-Aware Quality Test System in B5G-Aided Advanced Manufacturing

Photo by charlize from unsplash

The booming of the industrial Internet of Things (IIoT) brings an exponential increase in industrial devices, calling for more flexible and low-cost communications. The fifth generation and beyond (B5G) communication… Click to show full abstract

The booming of the industrial Internet of Things (IIoT) brings an exponential increase in industrial devices, calling for more flexible and low-cost communications. The fifth generation and beyond (B5G) communication technologies provide a dedicated solution by supporting two industry-targeted technologies: Massive machine-type communications (mMTC) and ultra reliable low-latency communications (URLLC). In this article, we design a B5G-aided quality test system in advanced manufacturing, where various sensors are connected to the base station (BS) and send contextual information via mMTC. The BS and quality test machine transmit short length commands and small size feedback to each other, respectively, via URLLC. We formulate a long-term optimization problem to improve the product qualification rate by maximizing the expected average reward with limited testing capacity and changing configurations. To address this problem, we develop a novel context-aware combinatorial quality test (CC-QT) algorithm based on bandit learning (BL), which integrates contextual information to predict the product quality, and a combinatorial method to decrease the complexity of the BL process. Furthermore, we derive a performance upper bound of the proposed CC-QT and analyze its computational complexity. Experimental results illustrate the performance of CC-QT and substantiate its superiority over the existing algorithms.

Keywords: quality; advanced manufacturing; b5g aided; quality test; test system

Journal Title: IEEE Transactions on Industrial Informatics
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.