LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Blockchain-Based Federated Learning With Secure Aggregation in Trusted Execution Environment for Internet-of-Things

Photo from wikipedia

This article proposes a blockchain-based federated learning (FL) framework with Intel Software Guard Extension (SGX)-based trusted execution environment (TEE) to securely aggregate local models in Industrial Internet-of-Things (IIoTs). In FL,… Click to show full abstract

This article proposes a blockchain-based federated learning (FL) framework with Intel Software Guard Extension (SGX)-based trusted execution environment (TEE) to securely aggregate local models in Industrial Internet-of-Things (IIoTs). In FL, local models can be tampered with by attackers. Hence, a global model generated from the tampered local models can be erroneous. Therefore, the proposed framework leverages a blockchain network for secure model aggregation. Each blockchain node hosts an SGX-enabled processor that securely performs the FL-based aggregation tasks to generate a global model. Blockchain nodes can verify the authenticity of the aggregated model, run a blockchain consensus mechanism to ensure the integrity of the model, and add it to the distributed ledger for tamper-proof storage. Each cluster can obtain the aggregated model from the blockchain and verify its integrity before using it. We conducted several experiments with different CNN models and datasets to evaluate the performance of the proposed framework.

Keywords: aggregation; blockchain based; federated learning; based federated; model; trusted execution

Journal Title: IEEE Transactions on Industrial Informatics
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.