LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Decentralized Federated Learning With Markov Chain Based Consensus for Industrial IoT Networks

Photo from wikipedia

Federated learning (FL) provides a novel framework to collaboratively train a shared model in a distribution fashion by virtue of a central server. However, FL is inappropriate for a serverless… Click to show full abstract

Federated learning (FL) provides a novel framework to collaboratively train a shared model in a distribution fashion by virtue of a central server. However, FL is inappropriate for a serverless scenario and also suffers from some major drawbacks in Industrial Internet of Things (IIoT) networks, such as unresilience to network failures and communication bottleneck effect. In this article, we propose a novel decentralized federated learning (DFL) approach for IIoT devices to achieve model consensus by exchanging model parameters only with their neighbors rather than a central server. We firstly formulate the problem of model consensus in DFL as a fastest mixing Markov chain problem and then optimize the consensus matrix to improve the convergence rate. Meanwhile, a practical medium access control protocol with time slotted channel hopping is taken into account to implement the proposed approach. Furthermore, we also propose an accumulated update compression method to alleviate communication cost. Finally, extensive simulation results demonstrate that the proposed approach improves accuracy and reduces communication cost especially under the nonindependent identically distribution data distribution.

Keywords: consensus; federated learning; decentralized federated; model; markov chain

Journal Title: IEEE Transactions on Industrial Informatics
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.