Federated learning (FL) provides a novel framework to collaboratively train a shared model in a distribution fashion by virtue of a central server. However, FL is inappropriate for a serverless… Click to show full abstract
Federated learning (FL) provides a novel framework to collaboratively train a shared model in a distribution fashion by virtue of a central server. However, FL is inappropriate for a serverless scenario and also suffers from some major drawbacks in Industrial Internet of Things (IIoT) networks, such as unresilience to network failures and communication bottleneck effect. In this article, we propose a novel decentralized federated learning (DFL) approach for IIoT devices to achieve model consensus by exchanging model parameters only with their neighbors rather than a central server. We firstly formulate the problem of model consensus in DFL as a fastest mixing Markov chain problem and then optimize the consensus matrix to improve the convergence rate. Meanwhile, a practical medium access control protocol with time slotted channel hopping is taken into account to implement the proposed approach. Furthermore, we also propose an accumulated update compression method to alleviate communication cost. Finally, extensive simulation results demonstrate that the proposed approach improves accuracy and reduces communication cost especially under the nonindependent identically distribution data distribution.
               
Click one of the above tabs to view related content.