LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Comprehensive Expectation Identification Framework for Multirate Time-Delayed Systems

Photo from wikipedia

The expectation maximization (EM) algorithm has been extensively used to solve system identification problems with hidden variables. It needs to calculate a derivative equation and perform a matrix inversion in… Click to show full abstract

The expectation maximization (EM) algorithm has been extensively used to solve system identification problems with hidden variables. It needs to calculate a derivative equation and perform a matrix inversion in the EM-M step. The equations related to the EM algorithm may be unsolvable for some complex nonlinear systems, and the matrix inversion has heavy computational costs for large-scale systems. This article provides two expectation-based algorithms with the aim of constructing a comprehensive expectation framework concerning different kinds of time-delayed systems: 1) for a small-scale linear system, the classical EM algorithm can quickly obtain the parameter and time-delay estimates; 2) for a complex nonlinear system with low order, the proposed expectation gradient descent algorithm can avoid derivative function calculation; 3) for a large-scale system, the proposed expectation multidirection algorithm does not require eigenvalue calculation and has less computational costs. These two algorithms are developed based on the gradient descent and multidirection methods. Under such an expectation framework, different kinds of models are identified on a case-by-case basis. The convergence analysis and simulation examples show the effectiveness of the algorithms.

Keywords: comprehensive expectation; algorithm; expectation; delayed systems; time delayed

Journal Title: IEEE Transactions on Industrial Informatics
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.