Information and operational technologies merge into the so-called industrial Internet of Things, which is one of the basic pillars of the Industry 4.0 paradigm. Roughly speaking, yet-to-come services will be… Click to show full abstract
Information and operational technologies merge into the so-called industrial Internet of Things, which is one of the basic pillars of the Industry 4.0 paradigm. Roughly speaking, yet-to-come services will be offered in the automation scenario by industrial devices having an internet connection for sharing data in the cloud. Currently, most efforts are in the development of protocols able to ensure horizontal interoperability among heterogeneous applications. Consequently, poor attention is devoted to time-related performance. In this paper, a new, full software, platform-independent approach is proposed for experimentally evaluating the delay in transferring information across local and intercontinental routes by applications leveraging on messaging middleware. The application is realized using the node-RED web-based framework, due to its availability on different platforms; the widely accepted message queue telemetry transport protocol has been chosen thanks to its low overhead and complexity. For sake of completeness, five different, private and public, brokers are used. The adopted industrial-grade hardware, complemented by global positioning system time reference, permits an overall synchronization and timestamping accuracy of a few milliseconds. The vast measurement campaign highlighted that, generally, quality of service (QoS) type 1 offers low end-to-end delay (average value less than 0.5 s) with reduced variability (0.1 s). However, the maximum end-to-end one-way delay ranges from 1 s for QoS 0 to less than 1.5 s for fully acknowledged QoS 2.
               
Click one of the above tabs to view related content.