LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Performance of EGNSS-Based Timing in Various Threat Conditions

Photo by jordanmcdonald from unsplash

Today’s society is highly reliant on time and frequency synchronization, e.g., in communications systems and financial networks. Precise timing is more and more derived from satellite navigation receivers that are… Click to show full abstract

Today’s society is highly reliant on time and frequency synchronization, e.g., in communications systems and financial networks. Precise timing is more and more derived from satellite navigation receivers that are unfortunately very susceptible to various signal threats. We studied the performance of global navigation satellite system (GNSS) timing under different operating conditions and tested the effectiveness of different techniques that improve timing receiver robustness. These features were tested under various threat scenarios related to specific vulnerabilities in GNSS-based timing, such as interference and navigation message errors, and their efficiency was analyzed against the corresponding scenarios. We found that interference or meaconing-type spoofing can threaten GNSS timing, but it can be detected by means of automatic gain control (AGC) and carrier-to-noise ratio-based methods. GNSS interruptions due to interference can be bridged by a local oscillator holdover technique based on a Kalman filter whose parameters are based on a GNSS time solution. Navigation message errors are mitigated by the European Geostationary Navigation Overlay Service (EGNOS), and constellation-wide timing errors can be detected by the use of a dual-constellation [global positioning system (GPS)-Galileo] cross-check. Dual-frequency operation for timing, in addition to mitigating first-order ionospheric effects, was found to be more robust to interference with the option to fall back to single frequency.

Keywords: performance; various threat; based timing; interference; navigation

Journal Title: IEEE Transactions on Instrumentation and Measurement
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.