LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Deep Nonlinear Dynamic Feature Extraction for Quality Prediction Based on Spatiotemporal Neighborhood Preserving SAE

Photo from wikipedia

Complex industrial process data often exhibit nonlinear static and dynamic characteristics. Traditional deep learning methods such as stacked autoencoder (SAE) have excellent nonlinear static feature learning capabilities, but they ignore… Click to show full abstract

Complex industrial process data often exhibit nonlinear static and dynamic characteristics. Traditional deep learning methods such as stacked autoencoder (SAE) have excellent nonlinear static feature learning capabilities, but they ignore the dynamic correlation existing in process data. Feature learning based on manifold learning using neighborhood structure preserving has been widely used in industrial dynamic process monitoring. However, most of the manifold learning methods extract linear features, and complex nonlinearities in process data are ignored. Therefore, a novel spatiotemporal neighborhood preserving stack autoencoder (STNP-SAE) is proposed to simultaneously learn deep nonlinear static and dynamic features of process data in this article. By constructing the spatial and temporal adjacent graphs, STNP-SAE can capture the spatiotemporal neighborhood structure information of process data during the feature learning process. Then, STNP-SAE is used to construct a soft sensor framework for quality prediction. The prediction performance of the proposed method is validated on a practical industrial process.

Keywords: feature; process data; process; spatiotemporal neighborhood; prediction

Journal Title: IEEE Transactions on Instrumentation and Measurement
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.