The marine environmental noise formed by wind noise, rain noise, biological noise, sea surface waves, seismic disturbances, and so on is a kind of interference background field in underwater acoustic… Click to show full abstract
The marine environmental noise formed by wind noise, rain noise, biological noise, sea surface waves, seismic disturbances, and so on is a kind of interference background field in underwater acoustic channels, which brings adverse effects to underwater acoustic target recognition. To improve the recognition accuracy of underwater targets under background noise interference, a bidirectional denoising autoencoder (BDAE) is proposed in this article for underwater acoustic target signal denoising robust representation learning. The proposed BDAE is an extension of the regular denoising autoencoder, which uses the original underwater acoustic target signals and their corresponding denoised signals to learn robust representations. We then measure the usefulness of the learned representations using a support vector machine (SVM) classifier. Our proposed approach is verified on the ShipsEar database. Experimental results indicate that the proposed BDAE can effectively learn the robust representations of underwater acoustic target signal denoising and is superior to the traditional methods.
               
Click one of the above tabs to view related content.