LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Novel K-Medoids Based SMOTE Integrated With Locality Preserving Projections for Fault Diagnosis

Photo from wikipedia

In the field of the fault diagnosis of industrial processes, there are many problems in process data, such as missing critical fault data, high repeatability of normal state data, and… Click to show full abstract

In the field of the fault diagnosis of industrial processes, there are many problems in process data, such as missing critical fault data, high repeatability of normal state data, and poor representation of faults data, which may reduce the accuracy of fault diagnosis. In this article, a novel K-medoids-based synthetic minority oversampling technique that combines locality preserving projections (KMS-LPP) is proposed for fault diagnosis. First, the synthetic minority sampling technology (SMOTE) is designed based on K-medoid to generate minority fault samples to address the imbalanced problem of data. Second, to extract the key fault-relevant features and reserve the local structure information at the same time, the manifold learning (ML) approach locality preserving projections (LPP) is performed to reduce the dimensionality of data. Finally, the Adaboost. M2, as an ensemble classifier, is conducted for fault classification. Simulations of the Tennessee Eastman process (TEP) are performed for validation of the performance of the presented KMS-LPP method. The obtained results show that KMS-LPP has enhanced the performance of fault diagnosis due to its higher accuracy compared with traditional oversampling and feature extraction methods, which indicates the effectiveness of KMS-LPP.

Keywords: preserving projections; fault diagnosis; fault; locality preserving

Journal Title: IEEE Transactions on Instrumentation and Measurement
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.