LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Modeling and Analysis of Magnetic Adhesion Module for Wall-Climbing Robot

Photo from wikipedia

Magnetic wall-climbing robots have wide applications due to their large adhesive force and loading capacity. However, researches have seldom focused on the magnet patterns and magnetic characteristics of the adhesive… Click to show full abstract

Magnetic wall-climbing robots have wide applications due to their large adhesive force and loading capacity. However, researches have seldom focused on the magnet patterns and magnetic characteristics of the adhesive module, which may influence the output performance of the robot greatly. Therefore, the purpose of this study is to analyze the magnet array, flux distribution, and magnetic adhesive force of wall-climbing robot in both quantitative and qualitative ways. It helps to improve the magnetic force and loading capacity significantly. The concept design of the wall-climbing robot is introduced and the system stability is analyzed. Following that, four magnet patterns are presented and the magnetic flux distribution is numerically simulated. The comparison among them shows that the alternatively magnetization pattern can generate larger magnetic flux density relatively. Subsequently, the magnetic field and adhesive force are both formulated analytically. It is worth noting that the curved surface is considered for the analytical modeling in this study. Thus, the modeling approach can be implemented to the magnetic characteristic analysis of other similar magnetic adhesive robots. Then, the numerical simulation is conducted on the magnetic field and force output to validate the analytical models. One research prototype of the magnetic wall-climbing robot is developed, and the system hardware architecture is introduced. Experiments are carried out to validate the analytical model and output performance of the robot system. The experimental result is consistent with the analytical model and numerical computation.

Keywords: wall; wall climbing; force; climbing robot; module

Journal Title: IEEE Transactions on Instrumentation and Measurement
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.