LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Design of a Compact RF Front-End Transceiver Module for 5G New-Radio Applications

Photo by edhoradic from unsplash

This article presents a new transceiver configuration based on the low-noise power amplifier (LNPA) approach targeting the reduction in size and the overall biasing complexity. In such configuration, the LNPA… Click to show full abstract

This article presents a new transceiver configuration based on the low-noise power amplifier (LNPA) approach targeting the reduction in size and the overall biasing complexity. In such configuration, the LNPA remains always at the ON state and the single-pole-double-throw (SPDT) switches control the conversion between transmitting (Tx) and receiving (Rx) modes. Different from the conventional configuration, the switching speed depends solely on the SPDT switches avoiding the settling time of the amplifiers. To ensure the stable operation of the LNPA under such condition, an over-the-air (OTA) durability test of the transceiver module is proposed for the first time. No obvious degradation was observed when the module was tested by switching between Tx and Rx modes every 30 s for 14 h of continuous operation. At 38 GHz, the 1-m OTA measurement using a standard 64-QAM fifth-generation (5G) new-radio (NR) modulated signal exhibited an error vector magnitude (EVM) of 4.52% at an output power of 18.38 dBm in the Tx mode. The noise figure (NF) in the Rx mode was measured to be 7.07 dB. The experimental results are comparable to the state-of-the-art transceivers in single-chip solutions. It is believed that the proposed transceiver based on the LNPA configuration has great potential as the building block of the large-scale phased-array systems for 5G NR applications.

Keywords: configuration; transceiver; design compact; new radio; transceiver module

Journal Title: IEEE Transactions on Instrumentation and Measurement
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.