The fast and in situ measurement of the complex magnetic susceptibility stands a potential geological tool for enhanced characterization of rocks and comprehension of the geological context of the landing… Click to show full abstract
The fast and in situ measurement of the complex magnetic susceptibility stands a potential geological tool for enhanced characterization of rocks and comprehension of the geological context of the landing and exploration sites when used on board planetary rovers. The real part of susceptibility is related to the capability to acquire magnetization and the imaginary part, with resistivity and magnetic energy loss mechanism of rocks. Therefore, the determination of the rocks’ susceptibility provides key information as to the need for the presence of water in the formation of certain minerals, which can be used as one of the rocks selection criteria, in sample return missions. Previous work has been done in the conception of a novel portable instrument, based on magnetic induction, to measure the complex susceptibility of rocks in the context of planetary exploration. The next step is to create a comprehensive calibration procedure to extract magnetic properties information from the direct readings. This work describes a novel instrument calibration methodology. The calibration of the novel instrument comprises a comparative methodology with representative patterns for the real and the imaginary components of the susceptibility. Therefore, the work also includes calibration sample conception, manufacture, and characterization by different techniques.
               
Click one of the above tabs to view related content.