LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Vision-Based Navigation System With Markerless Image Registration and Position-Sensing Localization for Oral and Maxillofacial Surgery

Photo by averey from unsplash

The quality of oral and maxillofacial surgery (OMS) significantly depends on the accuracy of surgical navigation. In this article, a vision-based markerless surgical navigation system is developed to overcome the… Click to show full abstract

The quality of oral and maxillofacial surgery (OMS) significantly depends on the accuracy of surgical navigation. In this article, a vision-based markerless surgical navigation system is developed to overcome the shortcomings in the currently available technologies. Registration methods both for patient and surgical instrument tracking are improved to increase the navigation performance. For patient-image registration, we propose an efficient texture-less pose estimation method using only shape information. An innovative strategy is developed to effectively reject the outliers and improve the pose accuracy, which is the first attempt at introducing geometric matching information to guide PnP calculation. For surgical instrument tracking, a position-sensing marker is used to achieve robust and convenient instrument localization with high accuracy. Experiments were conducted on the 3-D-printed maxilla and mandible models to evaluate the navigation performance. Evaluation results validate the effectiveness of the proposed pose estimation method in improving the pose accuracy for texture-less teeth. Besides, it is revealed that the position-sensing marker can be localized with high accuracy even under nonideal visibility conditions, which expands the motion range of the instrument and decreases the size of the tool. The entire system has a sufficiently small target registration error (TRE). These experimental results have verified that the proposed surgical navigation system can provide practical guidance for OMS with satisfactory accuracy.

Keywords: system; accuracy; registration; position sensing; navigation system; navigation

Journal Title: IEEE Transactions on Instrumentation and Measurement
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.