With the development of modern information technology, the collection, storage, and transmission of information in the process industry have been gaining popularity. However, the massive streaming industrial data obtained in… Click to show full abstract
With the development of modern information technology, the collection, storage, and transmission of information in the process industry have been gaining popularity. However, the massive streaming industrial data obtained in real time have some nonideal characteristics, such as lack of labels and missing values, which greatly increase the difficulty of process monitoring in process industry. Therefore, a robust semi-supervised fault classification method is proposed in this article. First, Wasserstein generative adversarial network (WGAN) and enhanced minimal gated unit (EMGU) are integrated to complete the missing data imputation of the incomplete unlabeled streaming industrial data, and then a semi-supervised ladder network (SLN) is trained with the imputed unlabeled data and complete labeled data for fault classification. A case study on the hot rolling process (HRP) demonstrates that the proposed method shows outstanding modeling and classification performance in lack of labeled data and missing data, compared with the other state-of-art deep learning methods.
               
Click one of the above tabs to view related content.