LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A CNN-Transformer Hybrid Recognition Approach for sEMG-Based Dynamic Gesture Prediction

Photo by dulhiier from unsplash

As a unique physiological electrical signal in the human body, surface electromyography (sEMG) signals always include human movement intention and muscle state. Through the collection of sEMG signals, different gestures… Click to show full abstract

As a unique physiological electrical signal in the human body, surface electromyography (sEMG) signals always include human movement intention and muscle state. Through the collection of sEMG signals, different gestures can be effectively recognized. At present, the convolutional neural network (CNN) has been widely applied to different gesture recognition systems. However, due to its inherent limitations in global context feature extraction, it exists a certain shortcoming on high-precision prediction tasks. To solve this issue, a CNN-transformer hybrid recognition approach is proposed for high-precision dynamic gesture prediction. In addition, the continuous wavelet transform (CWT) is proposed for to acquire the time-frequency maps. To realize effective feature representation of local features from the time-frequency maps, an attention fusion block (AFB) is proposed to build the deep CNN network branch to effectively extract key channel information and spatial information from local features. Faced with the inherent limitations in global context feature extraction of CNNs, a transformer network branch is proposed to model the global relationship between pixels, called convolution and transformer (CAT) network branch. In addition, a multiscale feature attention (MFA) block is proposed for effective feature aggregation of local features and global contexts by learning adaptive multiscale features and suppressing irrelevant scale information. The experimental results on the established multichannel sEMG signal time-frequency map dataset show that the proposed CNN transformer hybrid recognition network has competitive recognition performance compared with other state-of-the-art recognition networks, and the average recognition speed of each spectrogram on the test set is only 14.7 ms. The proposed network can effectively improve network performance and identification efficiency.

Keywords: recognition; transformer hybrid; network; cnn transformer

Journal Title: IEEE Transactions on Instrumentation and Measurement
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.