LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Sparse and Low-Rank Decomposition of a Hankel Structured Matrix for Impulse Noise Removal

Photo from wikipedia

Recently, the annihilating filter-based low-rank Hankel matrix (ALOHA) approach was proposed as a powerful image inpainting method. Based on the observation that smoothness or textures within an image patch correspond… Click to show full abstract

Recently, the annihilating filter-based low-rank Hankel matrix (ALOHA) approach was proposed as a powerful image inpainting method. Based on the observation that smoothness or textures within an image patch correspond to sparse spectral components in the frequency domain, ALOHA exploits the existence of annihilating filters and the associated rank-deficient Hankel matrices in an image domain to estimate any missing pixels. By extending this idea, we propose a novel impulse-noise removal algorithm that uses the sparse and low-rank decomposition of a Hankel structured matrix. This method, referred to as the robust ALOHA, is based on the observation that an image corrupted with the impulse noise has intact pixels; consequently, the impulse noise can be modeled as sparse components, whereas the underlying image can still be modeled using a low-rank Hankel structured matrix. To solve the sparse and low-rank matrix decomposition problem, we propose an alternating direction method of multiplier approach, with initial factorized matrices coming from a low-rank matrix-fitting algorithm. To adapt local image statistics that have distinct spectral distributions, the robust ALOHA is applied in a patch-by-patch manner. Experimental results from impulse noise for both single-channel and multichannel color images demonstrate that the robust ALOHA is superior to existing approaches, especially during the reconstruction of complex texture patterns.

Keywords: image; impulse noise; matrix; hankel; low rank; rank

Journal Title: IEEE Transactions on Image Processing
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.